

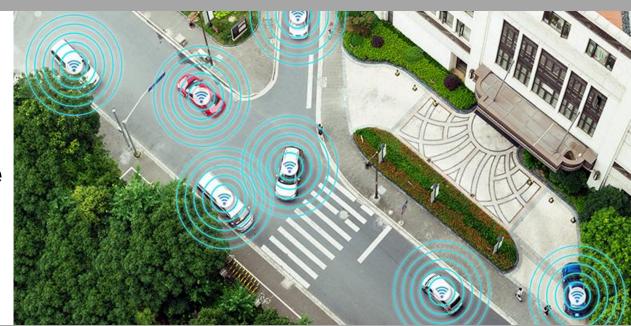
Sim4CAMSens Project – Modelling, Simulation and Testing of Automotive Perception Sensors

AESIN Conference 2024

Sim4CAMSens Project

Part of CCAV's Commercialising CAM Supply Chain Competition (CCAMSC).

The Commercialising CAM programme is funded by the Centre for Connected and Automated Vehicles, a joint unit between the Department for Business and Trade (DBT) and the Department for Transport (DfT) and delivered in partnership with Innovate UK and Zenzic.



Project Introduction

Mobility for all: more efficient, lower operating costs, safer

- Huge investments being made to develop and deploy AVs
- MUST ensure that AVs are safe to deploy to the satisfaction of the regulators
- Simulation is **ESSENTIAL** in AV development and safety assurance

Challenges:

- Large array of sensor types & new options
- Many factors affect sensor performance

- Vast amounts & diversity of training data
- Proving simulations are credible

Project challenges

To develop and mature a modelling and simulation supply chain, in the UK, for perception sensor development and testing

1. Quantify and simulate the perception sensors under all conditions

- 2. Generate highest value multi-modal AI/ML training data using simulation
- 3. Propose a framework for simulation credibility and AV safety to regulator

- Enable a sensor supplier to demonstrate the capabilities of their device
- Develop a sensor evaluation framework spanning modelling, simulation and physical testing
- Create test methods to cover the whole test spectrum for perception sensors
- Real-world data collection is difficult, expensive and time consuming
- Integrate high fidelity digital models of real-world environments with sophisticated sensor models and automatic annotation
- Including real-world validation

The consortium

Systems Engineering

Modelling & Simulation

Sensor Development

Measurement & Characterisation

Project Advisory Board

Project Overview

WP1

Perception sensor requirements

Identify generic sensor suites for selected applications and develop sensor performance requirements, DVMs, and targets

WP2

Test data collection and analysis

Develop test methods to measure material properties and noise factors that affect sensor performance

WP3

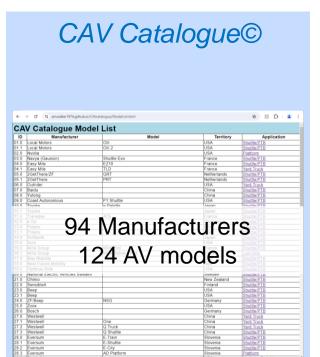
Modelling and Simulation

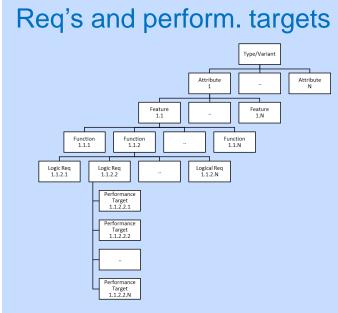
Improve the simulation environment and sensor models to allow for physics based simulation of more noise factors

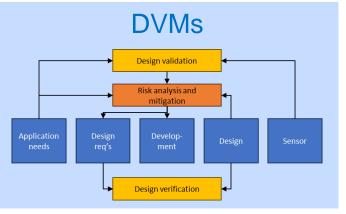
WP4

Accelerating sensor development

Apply the learnings from WP2 and 3 to accelerate the development of Oxford RF's perception sensor




WP1: Perception sensor requirements



WP2: Test data collection and analysis

SOTA review

Noise Factors

- Sources of perception sensor degradation e.g. snow, mud on the window, wear and tear.
- How does a noise factor impact perception sensor performance?
- How can performance degradation be measured experimentally?

Material Properties

- Properties that effect how perception sensors
 "see" a material in its field of view.
- Which objects and materials to focus on?
- What properties to focus on?
- How should/can property be measured, especially in the field.

Material & Object Measurement

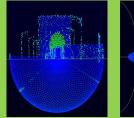
Measurement of material properties for lidar and radar

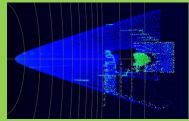
Measurement of VRU

Sensor Performance

Effect of weather on sensors

Performance across field of view with different targets


WP3: Modelling and Simulation



Validate Simulation to Physical Tests:

Create Sensor Models

Compare Results

Improve Simulation Capability:

Atmospheric Conditions

Sensor Specific Materials

Improve Sensor Models

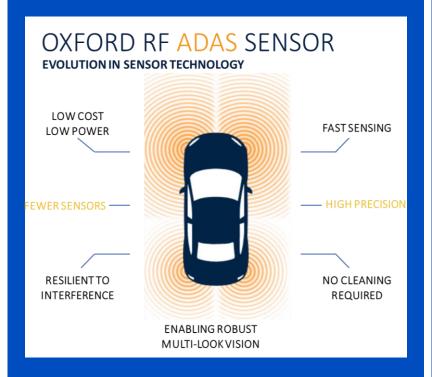
Develop Required Documentation

Understand current regs requirements

?? BSI vs ISO vs EU vs UNECE ??

Create "Sim Handbook" Template

Commence internal projects for known improvements/validation gathering



WP4: Accelerating sensor development

Oxford RF

Developing the world's first solid-state 360 sensors

Sensor model development

Improve Multipath and FMCW radar models

Validation of sensor model

Accelerate sensor development

Analysis work for Oxford RF

Create "Sim Handbook" for Oxford RF sensor model



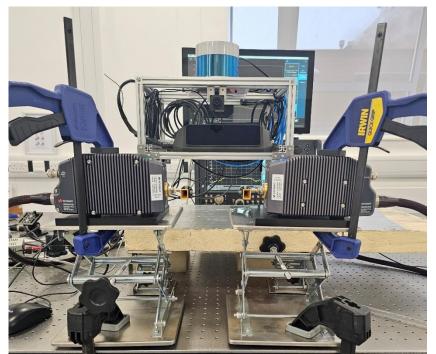
Sensor & Material Testing Campaign

Winter Testing of Sensors – Weather Variability

- 15 Sensors
 - Oxford RF radar + 2 radar development kits
 - + 2 commercial radar
 - 5 lidar 850nm, 905nm, 1550nm
 - 4 camera 3 different CMOS chips
 - 1 thermal imaging camera
- Sensors recorded data every 5 minutes
 - 30s data for radar and lidar
 - 25 frames for cameras

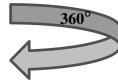


Material Measurements – LiDAR BRDF



Pedestrian & Clothing measurement

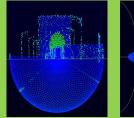
- VNA operating at 79GHz
- 2x lidar operating at 905nm and 1550nm
- Camera

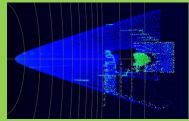


- Clothing over Sample Holder
- Clothing over ADAS Dummy
- Clothing over real humans



Simulation Improvements


WP3: Modelling and Simulation



Validate Simulation to Physical Tests:

Create Sensor Models

Compare Results

Improve Simulation Capability:

Atmospheric Conditions

Sensor Specific Materials

Improve Sensor Models

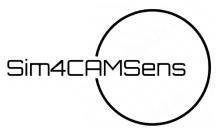
Develop Required Documentation

Understand current regs requirements

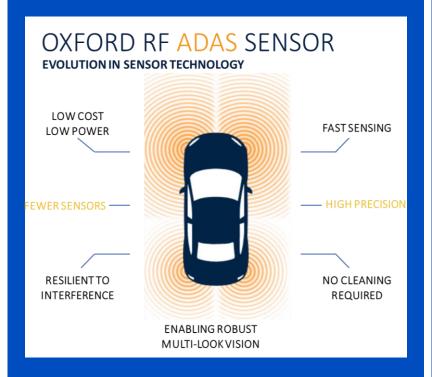
?? BSI vs ISO vs EU vs UNECE ??

Create "Sim Handbook" Template

Commence internal projects for known improvements/validation gathering



Novel Radar Sensor & Sensor Model Developments



WP4: Accelerating sensor development

Oxford RF

Developing the world's first solid-state 360 sensors

Sensor model development

Improve Multipath and FMCW radar models

Validation of sensor model

Accelerate sensor development

Analysis work for Oxford RF

Create "Sim Handbook" for Oxford RF sensor model

Thank you

Mike Dempsey
Claytex
Sim4CAMSens project leader
mike.dempsey@claytex.com

