csa.catapult.org.uk

Power electronics device modelling using ANNs and initial steps towards design automation

Dr Ingo Lüdtke, Head of Power Electronics

We work with Innovate UK

CSA Catapult

Fstablished £110 million **April 2018** Funding over 10 years

100+ Staff and growing

Our vision is for the <u>UK to become a global leader</u> in developing and commercialising new applications for compound semiconductors.

Power Electronics - key to Net Zero

CO2 emissions contributors

Source: https://www.acea.auto/files/ACEA_preliminary_CO2_baseline_heavy-duty_vehicles.pdf

Power electronic semiconductors – SiC / GaN vs Si

Semiconductor material	Power module	Power conve
breakdown field [a.u.] SiC GaN electron mobility [a.u.] saturation velocity [a.u.]	 ✓ Low on-resistance ✓ High switching speed ✓ Smaller chip size ✓ High operating temperature 	 ✓ High (system) e ✓ High power den ✓ Thermal manage ✓ High switching frequency
 ? Costs ? Wafer size ? SiC process steps ? GaN voltage rating 	 ? Parasitics ? Temperature ? Gate drivers / sensors ? High heat flux 	? Parasitics? Circuit topology? Thermal manage? High-frequency

Qualification standards ?

er converter

I management

magnetics

ystem) efficiency \checkmark More range ower density ✓ Smaller battery I management ✓ Lower cost vitching ✓ Faster charging ✓ Lower weight ICY Supply chain ics ? Technology track record topology

Motor design ?

Application

Background and motivation

- Traditional design tools are segmented and may lead to sub-optimal system performance
- Highly human-intensive workflow of building, testing, prototyping, and refining
- Traditional design tools are not enough to handle compound semiconductor electronics

But it is not straightforward!

But it takes too long to simulate!

Introducing AI-Optimised Power Electronics

Development methodology

AI-enabled digital design: Accurate modelling of compound semiconductors

Al-enabled digital design: Accurate modelling of compound semiconductors

- Nonlinear characteristics of voltages/currents are well modelled by ANN (only 10 neurons!)
- Parameter extraction is the key for accurate modelling so domain knowledge is essential
- RMS errors of transient voltage/current are below 5%

P. Yang, W. Ming, J. Liang, I. Lüdtke, S. Berry and K. Floros, "Hybrid Data-Driven Modeling Methodology for Fast and Accurate Transient Simulation of SiC MOSFETs," in IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 440-451, Jan. 2022, doi: 10.1109/TPEL.2021.3101713.

AI-enabled digital design: Multi-objective optimisation

- ANN is used to generate a surrogate model of the DC/AC inverter to speed up the optimisation
- Reduction of computation time by 80%

R. Rajamony, S. Wang, G. Calderon-Lopez, I. Ludtke and W. Ming, "Artificial Neural Networks-Based Multi-Objective Design Methodology for Wide-Bandgap Power Electronics Converters," in *IEEE Open Journal of Power Electronics*, vol. 3, pp. 599-610, 2022, doi: 10.1109/OJPEL.2022.3204630.

Vision: Automated power electronics converter design optimisation

Benefits	Implementation
✓ Faster design cycles	✓ Power device modelling
Reduce iteration time from months to days,	AI/ML data-driven model generation from
fostering innovation	characterisation data, digitised datasheets and manufacturer models
 Enhanced efficiency, reliability and power 	
density	 Power converter modelling and optimisation
Multi-objective optimisation of power	AI/ML mapping of design to performance space
electronics converters	based on a limited number of simulations.
	Automatic selection of circuit topology, power
✓ Cost reduction	devices and operating conditions
Minimise development time and costs through	
optimised design	✓ Learning loop

Feedback physical prototype validation data to continuously improve design model accuracy

Thank you!

www.csa.catapult.org.uk collaboration@csa.catapult.org.uk 01633 373121

- @CSACatapult
- Compound Semiconductor Applications (CSA) Catapult

We work with Innovate UK

